INTERPRETING THE ELECTROCARDIOGRAM

The “3-1-1” course

Derek Rowlands and Philip Moore

THE BACKGROUND

The electrocardiogram has been in clinical use for over 100 years. It is the investigation of first choice in patients presenting with chest pain, dizziness, syncope or palpitation. It is remarkable that, even after 100 years of use, it is still an absolutely essential part of any comprehensive cardiovascular assessment, whether that assessment is in relation to the evaluation of a possible acute or chronic cardiovascular condition or is part of a screening procedure.

Systematic, formal training in electrocardiographic interpretation in this country has been, and remains, virtually non-existent. Ad hoc courses given by Dr. Rowlands to medical students, to ITU nurses, to technicians and to general practitioners over many years have been very well attended, a fact which may or may not reflect the perceived value of the courses but which most certainly demonstrates the clear and massive need for teaching in this field. The need is not confined to these groups, but applies to medical students, junior hospital doctors, A&E nurses, ambulance personnel, A&E consultants and consultant general physicians.

General Practitioners have often in the past relied on their hospital colleagues to provide and to interpret electrocardiograms. This is no longer a realistic option. The primary care situation has evolved considerably in recent years. The majority of GP practices now have their own ECG machines and both patients and primary care trusts expect practices to provide a diagnostic ECG service. Currently this service is often dependent on one member of the group practice. Since he or she is inevitably considered by colleagues to be “the expert”, mistakes in interpretation often go unnoticed and unchallenged, with the result that the same mistake is likely to be made on the next occasion. Automatic computer interpretation of the record helps to some extent but these systems do make errors and an automatic analysis which is incorrect is unlikely to be challenged unless the doctor has a firm grasp of basic electrocardiography, which alone would give the necessary confidence to “challenge the computer”. Many General Practices in recent years have received funding for the purchase of ECG machines but we are not aware of any matching support for training in ECG interpretation. It must be recognised that once a record has been taken or obtained, the general practitioner has acquired a responsibility in relation to the handling of the ECG data and he/she is far less likely than doctors in hospital to have access to help from colleagues competent in the field. Any doctor acting as a result of an incorrect ECG interpretation obtained by automatic computer-based analysis may well still be considered to have at least a partial responsibility for any consequences of the error.

Junior hospital doctors necessarily have to interpret electrocardiograms in the course of their everyday practice. Typically their “training” consists of the hasty review of a simplified text and subsequent informal consultation with sympathetic colleagues. With the drive for earlier intervention in acute ischemic syndromes (most pressingly in respect of thrombolysis but, in those hospitals with, or with access to, interventional centres, also in respect of primary angioplasty) early recognition of significant S-T segment changes and of cardiac arrhythmias (both tachycardias and conduction disturbances) is increasingly important.

Intensive care and A&E nurses tend to have a reasonable working knowledge of the common arrhythmias but even in this area they are often unsure. In general they have little or no significant knowledge of the morphological aspects of the ECG. These nurses are a very highly motivated group of
bbhealthcare workers. They are usually denied access to anything other than very rudimentary teaching in the reading of ECGs despite the very clear professional need for, and their own powerful desire for, formal and effective instruction.

Cardiology technicians are probably the group most likely to have had some formal training in ECG interpretation. Many will have specialised knowledge (for example of pacemaker electrocardiography) but the majority would welcome further training, particularly of a structured and logical kind.

Consultant General Physicians have, in the past, been relied upon to provide an authoritative opinion on ECGs undertaken in hospital practice. Members of this group of doctors have rarely received any formal training in the subject and the majority have (relatively successfully it should be said) provided a diagnostic service using a pattern-recognition approach. Such a system of diagnosis will give the correct answer in many cases but is not reliable and can never solve the borderline case (in respect of which criteria for normality and for individual abnormalities are required). These matters are particularly important in relation to the diagnosis of acute myocardial ischaemia and infarction and of broad QRS complex tachycardias, but they also apply to the diagnosis of narrow QRS complex tachycardias and of conduction disturbances. With the increasingly consultant-based as opposed to the consultant-lead approach to acute medicine and with the rapidly evolving changes to the management of acute coronary syndromes, the need for the consultant physicians to have training in a reliable system of electrocardiographic interpretation has never been higher.

A & E Consultants share the same problems and responsibilities as consultant general physicians but their need for a reliable, logical system of ECG interpretation is even more acute since they are always in the “front line” in relation to emergencies.

Ambulance personnel have an increasing role in, and therefore an increasing responsibility for, the initial management of actual or possible cardiac emergencies. They are often the first professionals called upon to assess and to manage acute clinical situations, many of which pose the threat of early morbidity or mortality. Their actions in the first few minutes can have a profound effect on the eventual outcomes. They need to be competent in the recognition both of morphological and of rhythm abnormalities in the electrocardiogram.

Medical students have in the past hardly ever received any formal training in electrocardiography and the current crowded curriculum leaves even less room for this than formerly. With the advance of problem based learning it is even less likely that formal instruction in ECG interpretation will be available (or even permitted). From “day 1” of their house jobs, however, they are likely to be faced with the need to understand the electrocardiogram. Those who desire to avail themselves of the formal, didactic instruction, which these courses undoubtedly provide, should surely not be denied the option.

THE OBJECTIVES

The prime objectives of the course are to facilitate the understanding of, and to permit the reliable recognition of (i) the normal ECG, (ii) morphological abnormalities of the ECG and (iii) rhythm abnormalities.

The normal ECG. The single most important conclusion to reach about an ECG recording is whether it is completely within normal limits (which does not, of course, preclude the possibility of a clinically significant cardiac abnormality) or whether it shows some abnormality. To recognise and to define a specific ECG abnormality (e.g. left bundle branch block) requires a relatively small amount of information and is an easily achieved objective. To recognise and to define a normal ECG (with all its infinite possible variations) is much more challenging and requires a great deal of learning and understanding. This self-evident fact is ignored in most texts on the subject, which give little or no attention to the recognition of a normal recording. This course devotes one whole day to the normal ECG. Confidence developed in the recognition that a record is “within normal limits” enormously facilitates the subsequent understanding of specific abnormalities.

Morphological abnormalities. Abnormalities of the shape and/or dimensions of the various components of the ECG (P waves, QRS complexes, S-T segment, T waves, U waves) provide very useful information

© D J Rowlands September 04.
No part of this document may be copied, or stored in a retrieval system, without permission.
about structural abnormalities of, or functional or metabolic damage to, the myocardium (atrial and ventricular).

Rhythm abnormalities. The ECG is the only practically available method for recording and analysing abnormalities of cardiac rhythm and conduction.

THE COURSE DESIGN

The “3-1-1” course. The course design is unusual. It has been specifically designed in this way to facilitate understanding, learning, retention and subsequent clinical reliability. The first three days of the course run consecutively and sequentially deal with (i) the normal ECG (Day 1), (ii) morphological abnormalities of the ECG (Day 2) and (iii) abnormalities of the cardiac rhythm (Day 3). The emphasis is on **explanation of the way in which the normal and abnormal appearances arise**, in order to facilitate understanding and retention. After an interval of about 6 weeks (during which time delegates are encouraged to read records taken on their own patients following the interpretation algorithm provided) a further one-day course revises the morphological aspects of the normal ECG and the common morphological abnormalities and gives each delegate the opportunity personally to interpret 45 12-lead ECG recordings. After a further interval of 4-6 weeks a further one-day course revises the normal cardiac rhythm and the common arrhythmias and presents 55 ECG’s for interpretation. Hence the course is “3+1+1” (days). In days 4 and 5 the emphasis is on **learning the relevant criteria and applying these in practical ECG interpretation**.

Interactivity. The course is at all times interactive, and delegates are encouraged to interrupt whenever they experience any difficulty in understanding a concept or in agreeing with the presenters. The atmosphere is friendly and every effort is made to ensure that there is no sense of stress or intimidation. The objective of facilitating learning and understanding cannot be achieved if delegates are made to feel insecure or inadequate. It is essential that complete rapport between presenters and delegates is both achieved and maintained.

Practical ECG interpretation. The emphasis during the first three (consecutive) days is on understanding the normal and abnormal ECG and on learning the criteria for normality and for specific abnormalities. The emphasis during the subsequent (separate) 2 days is on revision and on exposure to multiple examples. The intention is that each delegate will, during the duration of the course, personally attempt to read a minimum of 100 ECGs.

Certification. Delegates who have attended all 5 days of the course will receive a “**Certificate of Attendance at the 3-1-1 ECG Course**”. Those who have attended all 5 days of the course and who also score a minimum of 80% in reporting the 100 test recordings will receive a “**Certificate of Basic Competence in Electrocardiographic Interpretation**”.

THE COURSE CONTENT

DAY1: The normal ECG.
History of electrocardiography
Indications for ECG recording
 - For the diagnosis of overt or suspected cardiovascular disease
 - For following the progress of patients with cardiovascular disease
 - For persons with risk factors for heart disease
 - As part of cardiovascular assessment prior to non-cardiac surgery in patients with known or suspected cardiac problems
 - For patients with known or suspected metabolic or systemic conditions
 - In the assessment of risk in such specialised occupations as pilot, train driver, HGV driver etc
 - In the assessment of young people before entering sports requiring extreme levels of exercise
 - As part of a general screening procedure (although it should be noted that it contributes little to assessment in young patients with no risk factors)
Basic principles
 - Basic electrophysiology
The cardiac cell membrane
 Resting membrane potential
 Depolarisation and repolarisation
 The action potential
 The propagated action potential
Cell types within the heart
 Pacemaking and conducting tissue
 Myocardial cells
Basic waveforms of the ECG (P, QRS, ST, T and U waves)
Basic form of the surface ECG
QRS waveform Nomenclature
Vector properties
The conventional 12 ECG leads
 Six limb leads
 Three bipolar limb leads
 Three unipolar limb leads
 Six precordial leads
The frontal plane QRS axis - meaning of
The frontal plane QRS axis – determination of
The frontal plane QRS axis – clinical and electrocardiographic significance of
Technique of ECG recording
 Proper electrode placement (precordial leads and limb leads)
 Consequences of incorrect lead placement
 Correct standardization
 Proper frequency response and calibration
 Proper paper speed
 Effect of age, weight and body build
 Muscle tremor
 Baseline drift
Normal morphology of P waves, QRS complexes, S-T segments, T waves and U waves
 Morphology of the normal QRS complexes in the precordial leads
 Clockwise and counter clockwise cardiac rotation
 Vertical, horizontal and intermediate heart positions
 Dimensions of the normal QRS complexes in the precordial leads
 Precordial S-T segments
 Precordial T waves
 Precordial P waves
 Recognition of abnormal q waves in limb leads
 Recognition of abnormal S-T segments in limb leads
 P waves in limb leads
 U waves

Systematic approach to ECG interpretation Steps 3 and 4 of the 4-step system
Examples of normal and abnormal ECGs interpreted by the systematic approach

DAY 2: Morphological abnormalities.
Left ventricular hypertrophy
 QRS changes
 Sokolow-Lyon index
 Cornell voltage criteria
 Romhilt-Estes criteria
 S-T segment changes
 T wave changes
 Effect on axis
Right ventricular hypertrophy
 QRS changes
 Axis shift
 S-T segment changes
 T wave changes
Biventricular hypertrophy
Right atrial hypertrophy
Left atrial hypertrophy
Right bundle branch block
 QRS changes
 S-T changes
 T wave changes
 Effect on axis
 Impact of presence of RBBB on ECG interpretation
Left bundle branch block
 QRS changes
 S-T changes
 T wave changes
 Effect on axis
 Impact of presence of LBBB on ECG interpretation

Systematic approach to ECG interpretation Steps 2, 3 and 4 of the 4-step system

The hemi-blocks
 Left anterior hemi-block
 Left posterior hemi-block

ECG changes in ischaemic heart disease
 Q wave and non-Q wave infarction
 QRS changes of infarction
 S-T segment changes of infarction
 T wave changes of infarction
 Time sequence of ECG changes of infarction – ageing an infarct
 Location of infarction
 Reciprocal changes in infarction
 Non-specific changes in infarction
 Acute ischaemic syndromes
 Reliability of the ECG in diagnosis of infarction
 Reliability of ECG in excluding infarction
 Pitfalls in the electrocardiographic diagnosis of infarction

The exercise ECG
 History of exercise electrocardiography
 Current usage of the exercise ECG
 Normal ECG changes during exercise
 Criteria for abnormality of the ECG during exercise
 Sensitivity and specificity of exercise ECG changes in the diagnosis of coronary disease
 Risks of exercise electrocardiography
 Contraindications to exercise electrocardiography
 Interpretation of the exercise ECG

Ventricular pre-excitation
 Effect on ECG morphology
 Relevance to cardiac arrhythmias
 Recognition of ventricular pre-excitation from the 12 lead ECG

Systematic approach to ECG interpretation Steps 1, 2, 3 and 4 of the 4-step system

Miscellaneous abnormalities
 Hypokalaemia
 Hyperkalaemia
 Hypocalcaemia
 Hypercalcaemia
 Hypothyroidism
 Pericarditis
 Pericardial effusion
 Cerebrovascular accidents
 Pulmonary embolism

DAY 3: Normal rhythm and cardiac arrhythmias.

Sinus rhythm
 Sinus arrhythmia
 Sinus bradycardia
 Sinus tachycardia
Sinus pause or arrest
“Ectopic” beats
“Premature” beats
“Escape” beats
Atrial premature/ectopic beats
 Atrial premature beats
 Atrial ectopic beats
 Blocked atrial premature beats
Atrial tachycardia
 Atrial tachycardia with atrioventricular (AV) block
Atrial flutter
Atrial fibrillation
Any atrial rhythm (ectopics beats, tachycardia, flutter or fibrillation) with aberration
Junctional premature beats
Junctional escape beats
Junctional rhythm
Atrioventricular nodal re-entrant tachycardia (AVNRT)
Atrioventricular tachycardia (AVRT)
Wolff Parkinson White syndrome
Supraventricular tachycardia (not otherwise identified)
Ventricular premature beats
Ventricular ectopic beats
 Uniform ventricular ectopic (or premature) beats
 Multiform ventricular ectopic (or premature) beats
 Interpolated ventricular premature beats
 Coupled ventricular premature beats
 Ventricular couplets
 Ventricular triplets
 R-on-T ventricular ectopic beats
Idioventricular rhythm
Non sustained ventricular tachycardia
Wide QRS tachycardia
 Supraventricular tachycardia with pre-existing bundle branch block
 Supraventricular tachycardia with functional aberrant intraventricular conduction
 Supraventricular tachycardia with pre-excitation
 Ventricular tachycardia
Ventricular parasystole
Ventricular tachycardia
 Fusion beats
 Capture beats
 Ventriculoatrial dissociation
 Ventriculoatrial conduction
Ventricular flutter
Ventricular fibrillation
Torsade de pointes
Reciprocal (echo) complexes
Atrioventricular conduction abnormalities
 First degree AV block
 Second degree AV block Möbitz Type I (Wenckebach)
 Second degree AV block Möbitz Type II (Möbitz)
 Complete (third degree) AV block
 High grade AV block
Atrioventricular dissociation

Logical Approach to rhythm analysis

DAY 4: Analysis of the Morphological of the ECG.
There will be an initial period (75 minutes) of revision of the normal morphology of the ECG and of the morphological changes associated with common abnormalities. The previously taught **Systematic approach to ECG Interpretation** will be repeated and practised. The first 15 test recordings will then be...
presented for individual analysis by each of the course delegates (in the second period). The next (third) period will involve marking the answers to the first 15 ECGs with an explanation of each record and interactive discussion with delegates on any conceptual or practical difficulties they have experienced. The fourth and sixth periods will each present a further 15 recordings for analysis and these will be marked and discussed in the fifth and seventh periods. The final (eighth) period will again revise the criteria for normality and for the common abnormalities and the Systematic approach to ECG Interpretation will be presented again.

DAY 5: Analysis of the Cardiac Rhythm.
There will be an initial period (75 minutes) of revision of the electrocardiographic appearances of the normal (sinus) rhythm and of the changes associated with common arrhythmias. The first 15 test recordings will then be presented (in the second period) for individual analysis by each of the course delegates. The next (third) period will involve marking the answers with an explanation of each record and interactive discussion with delegates on any conceptual or practical difficulties they have experienced. The fourth and sixth periods will each present a further 15 recordings for analysis and these will be marked and discussed in the fifth and seventh periods. The eighth be a presentation of recordings showing both rhythm and morphological abnormalities. The ninth period will involve a test with 10 ECG recordings, which show both morphological, and rhythm abnormalities. These will be marked and discussed in the tenth period. The final period will be of revision and of discussion of matters raised by delegates.

THE COURSE PRESENTERS

Derek Rowlands is Honorary Consultant Cardiologist at the Manchester Heart Centre and Consultant Cardiologist at the Alexandra Hospital in Cheadle. He was formerly Consultant Cardiologist at the Manchester Heart Centre and Lecturer in Cardiology at the University of Manchester. He has given over 100 3-day courses in electrocardiography for General Practitioners. He is the author of “Clinical Electrocardiography” and has written the chapter on electrocardiography in all four editions of the Oxford Textbook of Medicine. His film on the normal and morphologically abnormal ECG won first place at the Sixth Biennial John Muir Medical Film Festival in 1986. He served for 15 years as sole editor of “Recent Advances in Cardiology” and for 5 years he was co-editor (with Professor Doug Zipes from Indianapolis) of “Progress in Cardiology”. In all, he has published 13 books, 5 as sole author, 1 as co-author and 7 as editor or co-editor. He has extensive experience in teaching the ECG to general practitioners, to nurses, to medical students, to technicians and to doctors at all levels of hospital practice.

Philip Moore is currently SpR in cardiology, on the NW Thames rotation. He was formerly a GP principal in St Albans for 4 years and prior to that completed a PhD in the department of Medicine at the University of Manchester/ Manchester Royal Infirmary. During his time as a GP he was CHD (coronary heart disease) lead for his practice and during his final year in primary care was CHD lead for the St Albans and Harpenden PCT, sitting also on the PCT professional executive committee (PEC). He has extensive teaching experience both in primary and secondary care and believes that with the recent extensive progress in the treatment of heart disease, there is a great need for high quality ECG teaching, based on a firm understanding of the principles of electrocardiography.

THE COURSE MATERIALS

The course is extensively illustrated throughout with varying audiovisual techniques designed to maximise understanding and to minimise delegate fatigue. Each delegate receives a comprehensive, hard copy handout so that note taking is eliminated or minimised. Most of the examples shown are presented in the handout. Many of the ECG examples can also be made available on CD-ROM.

“3+1+1” PROGRESS

Delegates are expected to re-study the course material between the initial 3-day unit and each 1-day unit. During this period they should attempt to read as many new ECGs as possible. Each one-day unit starts with revision (morphology for the first 1-day unit and rhythms for the second). During the revision period there is opportunity for delegates to present records which have been obtained in their practice and which

© D J Rowlands September 04.
No part of this document may be copied, or stored in a retrieval system, without permission.
have presented difficulties. The major part of these one-day consists sessions is taken up with practical interpretation of multiple electrocardiograms.

FEEDBACK

At the conclusion of the first 3 days and again at the end of the fifth day, delegates will be invited to provide feedback on their views of the course. Information thus gained will be used in the design of future courses.

THE FOLLOW UP

Some weeks after the fifth day of the course the plan is for delegates to be sent 20 ECG records for interpretation. They will be invited to submit their reports, together with any questions or queries.

Although no formal arrangements are yet in place for this, the intention is to provide annual one-day refresher courses for those delegates holding a “Certificate of Basic Competence”.

For those holding “Certificates of Attendance”, the plan is to offer a 2-day further training course, leading to the possible acquisition of a “Certificate of Basic Competence in Electrocardiographic interpretation”.

We look forward to meeting you on the course.

Derek Rowlands Philip Moore